Preparing to Learn from Math Instruction

Mastery-Oriented Students Benefit Most from Exploratory Activities

Marci S. DeCaro
University of Louisville

Daniel A. DeCaro
Indiana University

Bethany Rittle-Johnson
Vanderbilt University
Should children be taught new concepts directly... or discover these ideas for themselves?
Direct Instruction

Should children be taught new concepts directly...

Dis discovery Learning

or discover these ideas for themselves?
Direct Instruction

Discovery Learning
Direct Instruction

Lessens burden on cognitive resources

(Kirschner et al., 1996)

Discovery Learning

Increases motivation and depth of understanding

(Wise & O’Neill, 2009)
Direct Instruction

Lessens burden on cognitive resources

(Kirschner et al., 1996)

Discovery Learning

Increases motivation and depth of understanding

(Wise & O’ Neill, 2009)

How can aspects of both approaches be combined to improve learning?
Exploratory Activities May Help Children Learn from Instruction

Evidence

– College students who explored examples learned more deeply from a psychology lecture than those who summarized a text

 (Schwartz & Bransford, 1998)

– 9th graders who explored datasets before instruction on descriptive statistics learned more from new instructional resources than those who received extended instruction

 (Schwartz & Martin, 2004)
Exploratory Activities May Help Children Learn from Instruction

Evidence

- These benefits are most apparent for complex problems requiring new insight
Individual Differences

Differences in how students respond to challenge may impact learning from exploratory experiences.

Students approach learning with different goals and conceptions of “ideal” performance.

(Hidi & Renninger, 2006)
Individual Differences

Students with **higher mastery-orientation**
- Motivated by a desire for personal growth
- Tend to view challenge (e.g., confusion, difficulty) as a signal there is an opportunity to learn and grow
- Generally respond to setbacks with increased effort and persistence
- Seek out challenge (e.g., new problem-solving experiences)

(Diener & Dweck, 1980)
Individual Differences

Students with lower mastery-orientation

– Do not especially appreciate the learning process itself (they want the answers)

– May even interpret challenge as signaling personal inadequacy and failure, causing them to withdraw from the activity

(Dweck & Leggett, 1988)
Current Study

Examined whether exploratory experiences (solving novel math problems) helped children learn from instruction at a deeper level

Because of individual differences in response to challenge, we anticipated that exploration would be more beneficial for higher mastery-oriented children
Math Equivalence

Operations on both sides of the equal sign represent the same quantity

\[3 + 4 = 3 + 4 \]

Children often treat the equal sign operationally

\[3 + 4 = 7 + 4 \]

– “It means add the numbers” or “get the answer”

Children need to have a relational view

– Look at relations across both sides of the equal sign

Important prerequisite for understanding algebra, even in early grades (NCTM, 2006)
Instruction Conditions

Order

– Instruct – Solve
– Solve – Instruct

Hypotheses

– The Solve – Instruct order should improve conceptual knowledge (understanding at a deeper level)
– Mastery orientation should enhance this effect

Children with higher mastery orientation should be better equipped to deal with the challenge
Procedure

Pretest
- 2nd-4th graders
- Suburban public school
- Selected if scored < 80% on Math Equivalence Assessment
- $N = 159$

Intervention & Immediate Posttest
Retention Test (after 2 weeks)
Mastery-Oriented Measure

Given at Pretest

Mastery-orientation score: Average of 2 items

- “In math class, I prefer course material that really challenges me so I can try new things”
- I want to learn as much as possible about math, even if I have to work hard.

1. Strongly Disagree
2. Disagree
3. Somewhat Disagree
4. Somewhat Agree
5. Agree
6. Strongly Agree

(Elliot, 1999)
Math Equivalence Assessment

Procedural knowledge
– Solving problems correctly

\[3 + 7 + 8 = 3 + \square \]

Conceptual knowledge
– Understand concept of equivalence

Is \(4 + 8 = 8 + 4 \) True or False?
What does the equal sign mean?

(Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011)
Pretest

ES1. What does the equal sign (=) mean?

It means sum or difference.

Retention

ES1. What does the equal sign (=) mean?

It means that 2 things are the same, like a scale.

Pretest

ES1. What does the equal sign (=) mean?

ex. $4 + 2 = 6$

Retention

ES1. What does the equal sign (=) mean?

It means both sides are the same.
Conceptual Instruction

3 + 4 = 3 + 4

There are two sides to this problem...

What the equal sign means is that the things on both sides of the equal sign are equal or the same...

Problem Solving

3 + 4 + 8 = □ + 8

How did you get your answer?

7 is the right answer.
Conceptual Instruction

3 + 4 = 3 + 4

There are two sides to this problem...

What the equal sign means is that the things on both sides of the equal sign are equal or the same...

Problem Solving

3 + 4 + 8 = □ + 8

How did you get your answer?

7 is the right answer.
Retention Test Results
Procedural Knowledge (Problem Solving)

No effect of order or interaction
Retention Test Results

Conceptual Knowledge

Marginal effect of order, $p < .08$
Retention Test Results

Conceptual Knowledge

Percent correct at Retention Test

-1SD Mastery Orientation +1SD

Lower Mastery Higher Mastery

Solve-Instruct Instruct-Solve
Retention Test Results

Conceptual Knowledge

![Graph showing percent correct at Retention Test for Solve-Instruct and Instruct-Solve groups. The graph indicates lower mastery and higher mastery groups with one standard deviation (-1SD and +1SD) for mastery orientation. There is a significant difference marked by an asterisk (*).]
Summary

Exploring problems before instruction improved subsequent conceptual knowledge...

...But only for children higher in mastery-orientation

– Discovery learning activities can be challenging
– Mastery-oriented children tend to be more resilient to such challenges, approaching such activities with the goal to master and understand the content

Lower-mastery orientation did not benefit learning, but it did not hurt either
Conclusions

Overall, adding exploratory activities before instruction better than a conventional tell-then-practice approach

– One practical exploratory activity: Solve unfamiliar problems with feedback

Examines an important constraint

– Exploratory activities may be best suited for students who are most motivated for this type of challenge

Combines elements of discovery learning and direct instruction

– Joins a growing body of literature

(e.g., Schwartz & colleagues)
Conclusions

Future research is needed

– To replicate these findings with a more comprehensive mastery-orientation scale or direct observation

– To extend these findings to the classroom, in other domains, and with other types of exploratory activities

– To see if supporting mastery-orientation allows all students to benefit from exploration
Acknowledgements

Laura McLean
Ellen O’ Neil
Children’s Learning Lab
Percy Priest Elementary School

NSF CAREER Grant
DRL-0746565

IES Postdoctoral Grant
R305B080008

marci.decaro@louisville.edu
bethany.rittle-johnson@vanderbilt.edu

http://peabody.vanderbilt.edu/earlyalgebra.xml