Learning from Explanation: The Timing and Source of Explanations For Learning Early Algebra
Bethany Rittle-Johnson
In collaboration with
Emily Fyfe, Abbey Loehr & Marci DeCaro
Direct Instruction
Lessens burden on cognitive resources
(Kirschner et al., 1996)

Exploratory Learning
Increases motivation and depth of understanding
(Wise & O'Neill, 2000)

Theoretical Perspective
• Integrate exploration and instructional guidance
• Capitalize on strengths of both
 • (Lorch, et al, 2010; Mayer, 2004; Schwartz & Bransford, 1998)

Sequencing Exploration and Instruction
• Instruction followed by problem exploration (Instruct-Explore): Predominant approach in U.S.
• Problem exploration, followed by instruction (Explore-Instruct): Alternative approach with promise
Instruction and Exploration: Source of Explanations

Direct Instruction
- **Instructional-explanations**: explanations provided by experts meant to elucidate underlying reasons and patterns
- **Self-explanations**: explanations constructed by learners in attempt to make sense of new information (Chi, 2009)

Exploratory Learning
- Both types of explanations can improve learning but also have limitations (e.g., Renkl, 2002; Rittle-Johnson, 2006; Wittwer & Renkl, 2010).

Objective
- Synthesize three of our recent studies on exploration and explanation
- All children explored unfamiliar mathematics problems and received instructional explanations.
- Manipulated the order of exploration and instruction.
- Studies varied in whether and how children were prompted to self-explain during the explore phase.

Learning Content: Math Equivalence

Two sides of the equation represent the same quantity

3 + 4 = 3 + 4

Children often treat the equal sign operationally

3 + 4 = 7 + 4
- “It means add the numbers” or “get the answer”

Need to get to a relational view
- Look at relations across both sides of the equal sign
- (e.g., Baroody & Ginsburg, 1983; McNeil & Alibali, 2005)

Important but Unfamiliar
- **Important**: Mathematical equivalence is an early developing & foundational concept in algebra
 - Provides the foundation for key algebra proficiencies (e.g., Carpenter et al., 2003; Kayac, 1988; Knuth, Stephens, McNeil, & Alibali, 2006; MacGregor & Stacey, 1997)
- **Unfamiliar**: Elementary school children rarely exposed to equations with operations on both sides (i.e., math equivalence problems)
 - E.g., Of all instances of the equal sign in 2nd-4th grade math textbook, operations were present on both sides of the equal sign only 1 to 6% of the time (Rittle-Johnson, Matthews, Taylor, & McBroom, 2011).
Study 1: Impact of order and self-explanation prompts in one-on-one tutoring

Exploring mathematics problems prepares children to learn from instruction
Marc S. DeCaro, Bethany Rittle-Johnson

Tutoring Session

Prompted to Self-Explain

3 + 4 + 8 = □ + 8
Ashley got 7, which is the right answer.
3 + 4 + 8 = □ + 8
Madison got 15, which is a wrong answer.

Or to Solve Additional Problem (e.g., 6 + 4 + 5 = □ + 5)

Tutoring Session

Instructional Explanation Phase
3 + 4 = 3 + 4
There are two sides to this problem...
What the equal sign means is that the things on both sides of the equal sign are equal or the same...

Problem Exploration Phase
3 + 4 + 8 = □ + 8
7 is the right answer.

1. Explore-Instruct order should...
 - Help children better gauge their understanding of the underlying concept (or lack thereof)
 - Challenge them to try to new ways to solve problems, helping them notice important problem features
 ... prepare children to learn from instruction at a deeper level
 * (Björk, 1994; Carpenter et al., 2003; Duffy, 2009; Mayer, 2004; Schwartz & Martin, 2004; Schwartz, Evans, & Chang, 2007)

2. Self-explanation prompts should promote knowledge activation and integration and lead to greater learning
 * (Chi et al, 1984; Siegler, 1995; Renkl, 1997, Rittle-Johnson, 2006)
Method

Participants:
• 159 2nd-4th graders

Design:
• Pretest-Intervention-Posttest
 • Immediate Posttest and 2-week retention test

Intervention Context:
• One-on-one tutoring session
• Randomly assigned to one of four conditions:
 • Explore-Instruct OR Instruct-Explore
 • Self-Explain OR Solve Additional Problems during explore phase

Math Equivalence Assessment

Procedural Knowledge
• Use correct strategy to solve problems
 • Learning (Familiar) 7 + 6 + 4 = 7 + _
 • Transfer (Novel features) 6 + _ = 6 + 5 + 3

Conceptual Knowledge
• Understand concept of equivalence
 • Equal Sign (explicit) What does the equal sign mean? 4 + 8 = 8 + 4
 • Structure of equations True or False?

Results

• Self-explanation prompts did not impact performance relative to solving additional problems
• Focus on order: Instruct-Explore vs. Explore-Instruct
 • Intervention
 • Posttest and retention test

Intervention Problem Solving Accuracy

*Explore-Instruct group had lower accuracy at intervention
Intervention Results:
Strategy Variability
Number of Different Strategies Used

<table>
<thead>
<tr>
<th></th>
<th>Instruct-Explore</th>
<th>Explore-Instruct</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct Strategies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3 possible)</td>
<td>1.17</td>
<td>1.34</td>
<td>.08</td>
</tr>
<tr>
<td>Incorrect Strategies</td>
<td>.47</td>
<td>.74*</td>
<td>.07</td>
</tr>
<tr>
<td>(2 possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Explore-Instruct group used a wider variety of strategies

Encoding of Problem Structure at Intervention

2 problems shown for 5s each (e.g., $5 + 2 = \square + 3$)
- Write down from memory
- Often make systematic errors in line with misconceptions (e.g., $5 + 2 = \square$) (McNeil & Aaball, 2004)

<table>
<thead>
<tr>
<th></th>
<th>Instruct-Explore</th>
<th>Explore-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems encoded correctly</td>
<td>44%</td>
<td>54%*</td>
</tr>
</tbody>
</table>

*Explore-Instruct group more accurate at encoding problem features

Intervention Explanation Quality

- Concept-based explanations such as: “They both have to equal the same.”
- For conditions that were prompted to explain, no differences in explanation quality based on order of activities, $F < 2$, ns.

<table>
<thead>
<tr>
<th></th>
<th>Instruct-Explore</th>
<th>Explore-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of concept-based explanations</td>
<td>35%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Study 2: Procedural Knowledge Across Posttest and Retention Test

No effect of order. Also no effect of self-explanation prompts.
Summary of Study 1

- Self-explanation prompts did not improve learning
- Timing of instructional explanations did not impact explanation quality

Summary of Study 1

Exploring problems prior to instruction boosted subsequent conceptual knowledge

- Exploratory experiences challenged students to
 - Try a wider variety of problem-solving strategies
 - Attend more to problem structure

Instructional explanations can reduce exploration and learning (Bonowitz et al., 2011)

Improving Connection between Instructional Explanations and Self-Explanation Prompts

- Different self-explanation prompts can trigger different cognitive processes and lead to different learning outcomes
 - (Nokes, Hausmann, VanLehn & Gershman, 2011)

- Thus, in Study 2, we used conceptual self-explanation prompts to facilitate knowledge integration.
Potential Benefits to Instruct-Explore Approach

- Effective self-explanation prompts during problem-solving can help learners integrate recent instruction with ongoing problem-solving task (e.g., Berthold & Renkl, 2010; Wittwer & Renkl, 2008)

Study 2 Method

Participants:
- 122 2nd & 3rd graders

Design:
- Pretest-Intervention-Posttest
- Immediate and 2-week retention test

Intervention Context
- One-on-one tutoring session
- Two conditions: Explore-Instruct vs. Instruct-Explore
 - Conceptual self-explanation prompts given to all students
 - E.g., “Why does 7 make this a true number sentence?”
 - Included familiar problem types in line with common misconception
 - to activate and engage misconception
 - (Vosniadou & Varela, 2006)

Intervention Self-Explanation Content

- Instruct-Explore condition provides more concept-based explanations, such as “They both have to equal the same.”

<table>
<thead>
<tr>
<th></th>
<th>Instruct-Explore</th>
<th>Explore-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of concept-based explanations</td>
<td>46%*</td>
<td>26%</td>
</tr>
</tbody>
</table>

Study 2 Intervention Strategy Variability

<table>
<thead>
<tr>
<th></th>
<th>Instruct-Explore</th>
<th>Explore-Instruct</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct Strategies</td>
<td>2.2*</td>
<td>0.8</td>
<td>.3</td>
</tr>
<tr>
<td>(3 possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect Strategies</td>
<td>1.6*</td>
<td>3.0</td>
<td>.3</td>
</tr>
<tr>
<td>(5 possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Explore-Instruct used fewer correct strategies as well as more incorrect strategies

Incorrect Strategies

Incorrect Strategies

Correct Strategies

Intervention Strategy Variability

Number of Different Strategies Used
Study 2:
Encoding of Problem Structure at Intervention
2 problems shown for 5s each (e.g., $5 + 2 = \square + 3$)
- Write down from memory

<table>
<thead>
<tr>
<th>Problems encoded correctly</th>
<th>Instruct-Explore</th>
<th>Explore-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52%*</td>
<td>37%</td>
</tr>
</tbody>
</table>

*Instruct-Explore group more accurate at encoding problem features

Study 2: Procedural Knowledge Across Posttest and Retention Test

*Instruct-Explore led to greater procedural knowledge on both learning and transfer items

Conceptual Knowledge

4 + 8 = 8 + 4
True or False?

What does the equal sign mean?

<table>
<thead>
<tr>
<th>Percent Correct</th>
<th>Structure</th>
<th>Equal Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruct-Explore</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Explore-Instruct</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

* Instruct-Explore had higher knowledge of structure and similar explicit knowledge of equal sign

Mediators

- Both self-explanation quality and problem-solving accuracy during the intervention mediated the impact of condition on learning outcomes
Study 2 Summary

- Contrary to Study 1, instruct-explore ordering improved the quality of self-explanations and invention of correct strategies, which in turn supported greater learning outcomes.

Study 3: Impact of Order in Classroom Context

- Effective exploration seemed easier to achieve than effective self-explanation in a classroom setting.
- Thus, focus on order of activities without self-explanation prompts. Predicted Explore-Instruct condition would support greater learning.

Study 3 Method

Participants:
- 47 2nd graders

Intervention Conditions:
- Explore-Instruct vs. Instruct-Explore
- Implemented in small groups of 3-6 students during one math class by research assistants
- Posttest was following day, rather than immediately after intervention

Study 3:
Procedural Knowledge at Posttest

*Explore-Instruct condition solved more problems correctly
Conceptual Knowledge

![Graph showing percent correct for structure and equal sign with bars for Instruct-Explore and Explore-Instruct.]

*No Effect of Order

Study 3 Summary

- Exploring problems prior to instructional explanations boosted subsequent knowledge in a classroom setting

Summary Across Studies

- Exploring unfamiliar math equivalence problems prior to instructional explanations leads to greater knowledge than solving the problems after instructional explanations
- If students are not supported in generating self-explanations that draw on instructional-explanations during problem solving
- If prior misconceptions are not activated (tentative)

Exploration Before Instruction

- There is a time for telling – often after students explore (Schwartz & Bransford, 1998)
- Exploration prior to instruction:
 - Activates prior knowledge
 - Helps students notice important features of problems
 - Helps students recognize that they don’t understand
 - Preparing them to learn from the instruction
 - (Björk, 1994; Carpenter et al., 2003; Duffy, 2009; Mayer, 2004; Kapur, 2011, 2012; Schwartz & Martin, 2004; Schwartz, Sears, & Chang, 2007)
Boundary Conditions
- There is a time for providing instruction before exploration.
- Instructional explanations prior to promoting concept-based self-explanations during exploration is one promising time.

Direct Instruction
Should children be taught new concepts directly...
Aspects of both approaches can be combined to improve learning
Exploratory Learning or discover these ideas for themselves?

Want to Hear More?
- Today 12:25 to 1:55pm, Marriot, Fourth Level, 413
- 59.033: Research on Mathematical Explanations and Discourse
 - Learning from Explanation: Does it matter who provides them?
 - Abbey Loehr and colleagues
 - Enhancing the quality of children’s explanations to promote patterning knowledge
 - Emily Fythe and colleagues

Acknowledgements
Children’s Learning Lab
- Marci DeCarr
- Emily Fythe
- Abbey Loehr
- Katie McEldoon
- Student RAs (Maryphyllis Cream, Polly Colgan, Rachel Ross, Maddie Black, Laura McLean and Ellen O’Neal)

Funding Sources
- NSF CAREER grant to Rittle-Johnson
- NSF Graduate Research Fellowship to Fythe
- IES Pre- and Post-Doc Training Grants

Slides, Paper and Materials available at:
- bethany.rittle-johnson@vanderbilt.edu
- vanderbilt.edu/childrenslearninglab
- vanderbilt.edu/earlyalgebra